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This report d scribes an effort undertaken to improve small gas turbineg combustor design
technigues. This analytical procedure is viewed as a significant step toward reducing the
design and development time and the cost associated with future Army gas turbine com-
bustors while simultaneously achisving a more durable and fuel-efficient design, The
reader is referred to the report documentation page for a description of each of the
three volumes of this report. It is considered worthy of widespread spplication with the

turbine industry. Any critique or other response regarding its use should be addressed to
this agency.

Mr, Kent Smith of the Propulsion Technical Area, Asronautical Technology Division,
served a8 Project Enginaer for this effort.
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ABSTRACT

The Combustor Design Criteria Validation Program was con=-
ducted by the AiResearch Manufacturing Company of Arizona under
Contract DAAJ02-75-C-0044 with the Applied Technology Laboratory,
U.S. Army Research and Technology Laboratories (AVRADCOM). The
primary objective of the three-phase program was to devalop and
validate computer analytical models for application to small gas
turbine engine propulsion combustion ayatems,

This report is presented in three volumes, Volume I
describas the formulation and validation through element test-
ing of six computer models conducted under Task I. Volume II
describes the application of the computer models to the design
and development of two combustor concepts conducted under
Tasks II and III. Volume III consists of a description of the
analytical models and a listing of the computer codes with
instructions on usags.

The Program Manager was Mr. T. W. Bruce and the Principal
Investigator was Dr. H. C. Mongia. Principal contributing
engineers were Mr, R. S. Reynolds, who directud the development
of the analytical models and Mr, E. B, Coleman who directed the
design and testing efforts. The program was monitored by
Mr. X, Smith from the Applied Technology Laboratory, U.S. Army
Research and Technology Laboratories, Fort Eustia, Virginia.
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I. INTRODUCTION

A, General Information

Past approaches to the design of turbo-propulsion combustion
systeme have relied largely on empirical correlations derived
from pravious development experience and based on theoretical
considerations of the fundamental combustion processes involved,
These correlation paramaters have proved quite useful for prelim-
inary design predictions and interpreotation of experimental re-
sults in the iterative saeries of development teats that normally
follow. With the increasing demands for improvements in combus-
tion system performance and particularly aince the focus of
attention is on combustion pollutant emiesion reduction, there
has bkeen & racogrilzed nead to obtain a more thorough understand-
ing of the basic combustion processes, Towards this objective
various mathematical models have bean devaloped, The models
have ranged from the perfectly-atirred and plug-flow reactors
where cliemical kinetics are considered to be the primary control-
ling factor to the more rigorous combustor-flow models that also
account for the effacts of heat, mass, and momentum transfer,

Under a pravious program sponsored by the U.S. Army
(Advanced, Small, High~Tomparature=-Rise Combustor Program), an
analytical design tachnique was developed that used varicus
individual models to analyze component processes of the combus-
tion system such as fual injection, primary zone performance,
dilution=-zone mixing, and film cooling. The primary-zone model
was a two-dimensional, finite~diffarence raecirculating-flow pro-
gram that computed flow-fiald velocities, temperatures, and
spacies concentrations. This program demonstrated the feasi-
bility of mathematical modeling as a promising aid in combustor
dasign as a potential means for helping to reduce the time and
cost of development.

21
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The present program represents an extension and refinement
of the previous effort with specific application to the design
requirements of advanced, small, high—-temperature-rise combus-
tors for aircraft engines in the 0.91- to 2.27-kilogram-per-
second flow range. This program was performod for the Applied
Technology Laboratory, U.S. Army Research and Technology Labora=-
tories (AVRADCOM), Fort Eustis, Virginia, by the AiResearch
Manufacturing Company of Arizona during the period July 1975 to
Octobar 1978. The program is documented in this three-voluma
report, [}

B. Objectives.

The primary objective of this program was to further davelop
and validate existing analytical combustor design procedures
that can be umed to significantly shorten the design and
developmant cycle of amall advanced gas turbine engine com=
bustors.

The basic approach of this program consisted of a concen-
tratod analytical treatment of key combustion phenomena affec-
ting nombustor performance complemented by rig tests. The rig
test culminated in a completa series of performance mapping to
validate the empirical/analytical combustor design procedure in
an environment natching an actual operating engine.

The program was initially comprised of four tachnical tasks:

Task I - Analytical=-Model Refinement

Task II - Full~Scale Combustor Darign, Fabrication,
and Preliminary Tests

Tagk III - Combustor~Performance Mapping

Tapk IV - Limited Modification and Retasnt

R e

T e e o




The Task I technical effort is described herein. A
§ ; complete description of the Task II and Task III activities is
? presented in Volume II, The computer codesa for the combustor
design that aevolved from that effort are fully documented in
Volune IlI. The combustor performance goals were achievaed in :
Tasks IY and III; thus Task IV was cancelled, f'

The computer modela are based upon the numerical solution
of the governing aero/thermo equations applicable to turbo-

{ propulsion combustor environment, and are, therefore, applicable |
for analyzing internal flowfield of can, can-annular, and | Y
annular combustor dguometries. Both the in-line and reverse=- 1 9
flow combustor configurations can be analyzed,. |

B R Al R <ot s el kel

e
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i The cost-effectiveness of the empirical/analytical deaign :
: , procedure was to be demonstrated by undertaking the design and R,
developmant tasting of two full=scale annular combustors based

on the following engine/combustor configurations, parametars, and
goalss

. QT s AT A o i TN ST 1S

1, Engine/Component Configuration.

| . Annular-combustor configurations ]
? ° Centrifugal compraessor (last atage)

z . First-stage axial turbine ‘

E ™ Nonregenerative cycle f ﬂ
| ‘ 2, Parameters and Goals.

» Engine airflow, wa3 = 1,30 kg/s
t ® Combustoxr inlet pressure (P3) = 1013 kPa

() Compreasor aefficlency = 78.4 percent (total=-to-static) . {

° Combustor inlat temperature = 622K : f

i
¢
1}
)
{
1
]
‘ 1]
1




e Combustlion afficliency = 99.5 parcent (100 percent
power)
= 98,0 percent (5 percent b

PE = T4 max = T4 avg
davg = T3

where

j power) 3
» ® Combustor pressure loss PT3‘:§4 = 3 percent f f
iﬁ ) Combustor discharge temperature (T4avg) = 1533 K g ?
é e Maximum circumferential pattern factor (PF) <0,23 i § é
:
{

1 ° Average radial temperatuve profile compatible with ]
; typical turbine blade requirements * ?‘

® Maximum radial pattern factor (RPF) <0.075

PF Ty aggﬁ;ad max ; T4 avg 3 g
4 avg 3 3

T4 avg rad max = paak valua of the circumfarentially

averaged radial temperature profile

whaere

® Good light-off/relight capability to G091 meters
altitude and ambient-temperature conditions per |
MIL-E-5007D, Paragraph 3,2.5.1 (dated 15 Qutober, 3 i
1973) Wl 8

° No visible carbon formation with hot fuel or at
high=altitude conditions

° Multifuel capabllity, including JP-4 and JP=5

N BV Vb b 44 - o - oyl ga el b sl Mgt R
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e FPuel manifold operational capability to run for ‘
20 hours with contaminated JP~-4 fuel in accordance ! J
with MIL~E-8593A, Table X m

° The combined CO and lIC exhaust cemissions will be )
sufficiently low to meat the previously noted com-
bustion efficlency goals at ).NN~ and 5-percent
rated power. The NOx LTO emiassions level will ) -
be at or below the 1979 EPA NO, standards. The &
maximum amoke number will be below the threshold
of the exhaust plume visibility

sy et e

e

] Acceptable component temperature levels and gradients
to anaure long combustion system life and reliability.

® Reasonablae cost and waeight

C. Summary.

L L L N S R P e e

The following six computer aodes were devaloped and refined
during Task I of the program:

o Annulus-flow modal

® 3-D combustor-performance modal

° Liner=cooling madel i 3

! 3

e  Transition-liner mixing model ? i
' i p

° Gaseous-emisaions model ‘ ?

. Fual-ingertion model

25
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A one~dimensional annulus-flow model is used to calculate
the pressure losses and airflow distribution around the combus-
tor liner. Information provided by this model on the jet velo-
cities and efflux angles for the various orifices around the
combustor liner is used for specifying the boundary conditions
required by combustor internal flow programs.

The internal flow-£fleld characteristics, including combus-
tion efficiency, exhaust-temperature gquality, and lean blowout can
be predicted by a 3-D recirculating (elliptic) reacting program.
The program is based upon a computer code procured from
Professor D. B. Spalding, and uses a variant of the numerical
schems described in Reference l. The program is used to
analytically assess the effect of detail desiygn changes on com~
bustor performance.

An accurate prediction of the practical cooling=band per-
formance and attendant liner-temperature l(vels and gradient is
essentlial for estimating liner life. A 2~D parabolic program
based upon the efficient numerics of Patankar and Spaldin92
is used for analyzing the f£low region adjacent to the liner.
Appropriate initial, edye, and boundary conditions are supplied
by the combustor performance model and the annulus flow model,
The 2-D parabolic program is also used to predict the mixing
rate in the transition liner of the reverse-flow annular com-

bustors.

A 2-D parabolic program incorporating a l6-step kinetic
scheme was developed to predict gaseous emissions., The fuel-
insertion model provides a rough estimate of fuel-nozzle system
performance in a specified combustor flow field.

1Patankar, S.V., "Numerical Prediction of Three-Dimensional
FPlows," Studies in Convectiont Theory, Measurement and
Applications, Volume 1 (B.E. Launder), Academic Preas (1975)
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The following elemant tests were conducted to furnish data
for validating the analytical modelss

° Sauter mean diameter {SMD) measurements of practical
% air-assist airblast nozzles and air-assist pressure
! atomizers,
:
L. ° Film effectiveness of a conventional film=cooling

scheme; and three advanced cooling concepts under
simulated combustor environments.

. Mixing of cold transverse jets with a confined hot
stream.

e Can combustor mapping

b
W

, - Nonreacting 3=-D velocity and pressure
meagsurament ;
- Internal profiles of emissions with cJet=A

and natural gas.

- Radiation measurements.

o Transition liner mixing. ;

A reasonably good agreement was achieved between measure-
ments and models incorporating a two-equation turbulence model,
: a two-step kinetic scheme, and a realistic spray combustion
model.

A description of combustor-design procedures is presented
{ in Section II. A brief description of the six combustor

2iﬂatankar, 8.V., and D.B. Spalding, "Heat and Mass Transfer in
Boundary Layers," Intertext Books (1970)}.
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; analytical models is given in Section III (see Volume III for a i g
] detall description of the models and associated computer codes). : }
J Section IV presents experimental data obtained from different b
_ element testa. Model validation is presented in Section V. ¢
3 Conclusions of the present study and some thought for future y

E combustor-modeling activities are summarized in Section VI, 3

:._‘,_.‘ae'.-aa——_—“'w

)
b ;
4 i LI b,
| { N
t } 3
p N ; X
‘I L '! [
] : 1
' t 3
g H I
¥ ! : b
r ' .
b 3

it

R T D IR,

I e,

e e e
ok L

. ! 3
, !
(\ ] .
3 1
, -
i i
E \
‘ 1

L
e bz

o e i S o ¢

TN o
! B
) I b
{ ,
3
i ! )
3 : R
N i
:
1 !
1 i
4 3
[l
i) "

28 : 1

Lt Lot e «
¥ .. . .
o - : ‘
T N 4. v .

) - Y
vy . o rENE e FanN i

’ L
A1 R Rt A ey 1 A b L g e NI A o AT 6 e B s o s

kB s gt A LA it i

B LA LA A BN A




T s

B
2 II. COHMBUSTOR DESIGN PROCEDURES

' Design considerations for a turho-~propulsion combustor must
address the following performance and operational factors:

) Combustion efficiency

( a ) Lean flame stability and altitude relight

. Ground idle/starting

: s Carbon and smoke formation
#
{ ® Gaseous emissions
‘ [} Exhaust temperature guality (radial and circumfer-

ential profiles)

Liner-wall temperature and permigsible wall-

e

e I R T T

‘ temparature gradients

Many of these raquirementas have to be compromised in order to
achieve acceptable combustor performance over the entire engine

L —

' ’ flight envelope.

Due to the complexities associlated with the combustion
processas and flow field in gas turbine combustors, the avolution
‘ of combustor-design technology haa proceeded along two distinct
! paths, Practical engineers faced with hardware problems have
: daveloped a number of design correlations and empirical design
procedures, such as presented in Section II.A, On the other
t hand, researchers involved in studying fundamental aspects of
reactive flows have developed a number of analytical models
that address specific phenomena.

N . T T

SR Gt i

e e Sapa




The communication gap between practical combustion engineers

and fundamental researchers is quite wide. This program concen= i
trated on bridging that gap, and making available to the gas ;
turbine engine industry a cost-effective combustor design pro- }
cedure that makes use of "experience" correlations as well as %
i

;

|

combustor analytical models based on well-tried, succesaful,
mathematical models of turbulence, chemical kinetics, apray
combustion, and radiation. A complete set of advanced analytical *
; design tools has baen put together to address and analyze !
important aspects of gas turbine combustion phenomena, as
explained in Section III, : )

o 7 TeRe SRt T TS

B T — i mr.

A typical conventional empirical design approach is out~
lined in Section II.A. The coupling of an empirical approach
with combustor analytical models is explained in Section II.B.
The use of new desiyn techniques has been rewarding at AiResearch
in the design and development testing of a numbar of advanced
combustion concepts. It is hoped that with continued improve=
| ment in understanding of roeactive flows, and with a judicious i
; blend of hardware and modeling experience, the empirical/ E 3
analytical combustor-design procedure will become universally 3 )

|
‘,

applicable.

A. Empiricul Design and Development Procedures.

: ' The conventional approach to the design and development of .
§ ' combustion systems for gas turbine engines involves extensive { f
: use of empirical correlations derived from expaerimental analysis, : f
; followed by a series of component-development tests. Through v
; the years, a number of empirical and semi-empirical correlations )
have been developed. by engine manufacturers to provide guide-

\ lines for the initial design of a combustion system, and to pre-
|

|

dict attainable performance on the basis of experience trends. ’

30 3

4




The empirical~design approach differs from company to com-
pany, and between individuals of the same company. Neverthe-
less, the design approach must give consideration to numerous
design criteria including combustion efficlency, lean flame
stability, altitude relight, ground idle/starting, carbon and

: i smoke formation, gaseous emisslona, exhaust-temperature quality, i
y . combustor pressure drop, and liner durability.

High combustion efficiency, over the entire engine operating
! range, ias a prima ocbjective in turbo=-propulsion combustion system
design, as it directly affects spacific fual consumption.
Inefficiencies in the combustion process can be explained by
using detailed flow models, such as the 3=D Combustor-Performance
‘ Model desoribed in Section III.B, However, simple semi-empirical
{: correlations, such as Lefebvre's air-loading parameter or its
4 : ninor modification, shown in Figure 1, are quite useful for
eltiﬁating initial combustor=size requirements for a givan
‘ application.

i . Other parameters that are used for scaling combustors are
| heat-release rate and reference velocity shown in Figure 2
(from Reference 3). The cross~sectional dimension can be
astablished consistent with experience correlations between
reference !ltach number and allowable pressure loas, asuch as
typically shown in Figure 3(a).

The required dilution-zone volume, laength, and channel :
height can be estimated by using simple curves, shown in : i
Figure 3(b). 1In this curve, the genaral trend for combustor { j
pattern factor is shown to ba an inverse function nf the i '
pressure~loss factor (AP/qraf) and the dilution zone length-to-
\ ; height ratio.

j Carlson, N.G., "Development of High-Temperature Subsystem
! Tachnology to a Technology Readiness State: Phase I

! Topical Report, Preliminary Combustor Deaign," Technical
' Report FE=2292-~11, November 1977, Work Performed Undar

' ‘ Contract No. EX-76-C=01-2292,
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The liner cooling-air raguirements have been estimated by
using a varlety of correlations, as presented in Figures 4(a)3
-

and 4(b)4, or the following simple expression from Reference”:

Percent Film Cooling = 0.1 Ti - 30 (+10 percent)

The saelectlion of a fuel-injection system is leas rigorous
compared to combustor gaeometrical configuration and the liner-
cooling=air ragquirements. Experiencea indicates that in addition
to air or fual-loading parameters, the fuel-injaction process has
a significant effect on combustion efficiency (particularly at
low~powar points). The fuel-injection system also affacts
exhaust~temperature quality, smoke and carbon formation, lean
blowout, and fual impingement on the liner wall with attendant
liner hot apota. Turbo=-propulsion combustors have employed a
variety of fual-injection systaems in regard to nozzle configura=-
tions (pressure atomizers, including simplex/duplex or airblast),
modae of insertion into the linar (axial versus radial/tangential),
axial location from the dome and orientation relative to the
recirculation zone, and fuel-nozzle characteristica such as
droplet size and cone angle. 80 numerous are the possible com-
binations that the successful developmant of a realistic semi~-
empirical correlation involving aero/fuel~nozzle interaction is

a remote possibility.

Once the initial combustor configuration is established,
the subsequent daeasign and developmant approach is varied, Some
enginaers prefer performing caloulations by using a number of
simple computar programs. The following paragraphas give a

leod, 1, P,, and K. M, Johansen, "Advanced, Small, High=-
Temperature-Rise Combustor Program) Volume II Design and

Test of Pull-Scale Combustion Bystem," AiResearch Manufacturing
Co,, UBAAMRDLTR-74~38, Eustis Directorate, U.S. Army Air
Mobility R&D Laboratory, Fort Eustis, va., AD776978,

Fobruary 1974.

odgerl, J., "Combustion Modeling Within Gas Turbine Engines,"
AIAA Paper No, 77-52.
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brief description of the use of simple calculation methods
based upon the computer codes documented in Reference 6.

A one~dimensional annuluag flow model is used to calculate
the pressure losses and airflow distribution around the com=
bustor liner. The analysis includes the effccts of area change,
heat transfer, friction, drag due to nozzle shrouds and service
struts, and mass addition. The model calculates the flow-
discharge coefficients and efflux angles for the orifices along
the annulus,

An impinging~jet recirculation model predicts the effects
of multiple three-dimensional radial jets and the recirculation
caused with the impinging jets. The control volume axis for
model development is the centerline of the jet-impingement
ragion. “The flow momentum is related to the pressure differen-
tial that results from jet blockage with use of the momentum
balance. Knowing the number and ¢geometry of the primary ori=-
fices, and assuming that the primary-zone exit flow experiences
a sudden expansion loss when flowing past the impinging jets,
the moddl caloculates tha fraction of the primary orifice flow
rate that recirculates upstream,

A dilution jet trajectory moc:l is used to predict dilu-
tion jet trajectory, mass entrainment, velocity, temperature
decay. jet spread, and profile changes after jet mixing.

Fuel-spray trajectory models are used for predicting apray
charactaristice of various fuel injectors. These modals are of
considerable benafit in the selection of fuel injectors and their
optimum location in a specifiecd combuastor internal flow field.

-

6Huntar, 8.C., K. M. Johanasen, H. C., Mongia, and M, P, Wood,
"Advanced, Small, High-Temperature-Rise Combustor Program,
Volume I, Analytical Model Derivation and Combustor-Element
Rig Tests (Phases I and II)," AiResmearch Manufacturing Co.,
USAAMRDL TR74-3A, Bustis Directovate, U.W. Army Air Mobility
R&D Laboratory, Fort Eustis, va., AD 778766, February 1974,
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A one-dimensional wall-cooling model, similar to Reference
7, is used for calculating the liner-wall temprrature levels,
The analysis includes flame radiation to the wall, convection
on both sides of the wall, radiation from the cold side of the
wall to the plenum, and film-cooling effectiveneas. The heat-
conduction loas through a single or multiple material thickness
is also included.

With the help of the above models, it is possible to
identify potential problem areag with the preliminary combustor
configurations. The designs are modified as required. Detail
drawings are prepared, parts fabricated, and component=-
developnent teating initiated, During thesme tests it is impor=-
tant to relate experimental results hack to the empirical
parameteors that were used for preliminary design. A syatematic
means of collecting the relevant data for correlation purposes
and future reference is highly desirable,.

An empirical approach, as delineated above, has worked
reasonably well with combustor configurations that have evolved
from well-proven ccncepts. The design/development time duration
and cost can vary enormoutrly, depending upon the target goals,
With increasingly stringent levels of design requirements, the
inadequacy of simple one-~dime.~suional calculation procedures is
quite obvious, Consequently, th. interpretation of the experi-
mental data becomes more qualitative in nature, with a resultant
increase in development time and coat,

B. Empirical/Analytical Design Procedura.

A more cost~effective design procedure can be developed
if the experimental results are properly evaluated. Not only

. doas it help in planning a correct approach for the component

iBallal, D. R., and A, H. Lefebvre, "A Proposed Method for
Caloulating Film Cooled Wall Temperxatures in Gas Turbine
Cotbudtion Chambers," ASME Paper 72-WA/HT-24.
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rig tests, but well-scrutinized experimental data is also useful
for further improving empirical correlations and for future
reference, The empirical/analytical design procedure is a first
milepost along the path of establishing the combustor design and
developnent as a scientific approach, rather than the "cut and
try" approach that has been used for so long. The approach does
not minimize the importance of the empirical data base. On the
contrary, it (with the help of advanced combustor analytical
modelas) improves our fundamental understanding of the various
physico-chemical process ocourring in gas turbine combustors.
The choice as to which analytical models should be used is very
critical, as it will directly affect the level of asuccess
achieved.

Due to the complexities assoclated with the combustion
process and flow fleld in gas turbine cumbustors, the development
of combustor analytical models has prooceeded along two distinct
pathai

. Simplified or detailed reaction mechanisms with
gsimplifiad £low modalas, and

° Dotailed flow models with simplified or detailed
reaction meshaniams.

A nmajority of combustor analytical models have utilized
ldealized flow models comprised of wall-stirred or partially=-
stirred reactors and plug flow models. Both simple and complex
kinetlic achemes have baen ugsed for predicting fuel/air reaction
rates., These modals have been quite useful for data interpre-
tation, but their application asm combuastor analytical design
tools im quite limited. Tne model limitations8 are associa-~
ted with the inability to accurately predict the effect of com-
bustor geometrical details on residence time and fuel/air ratio

distribution,

Mosier, 8. A., and R. Roberts, "Low-Power Turbopropulsion
Combuator Exhaust Emissions, Volume 3, Analysia,"
Technical Report AFAPL-TR-73-36, 1974,
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The development of detailed flow models has been slow due ,
to a number of reasons including numerics, incomplete under- } 5
standing in regard to turbulence, chemical kinetics, spray com-
bustion, and radiation. As progress is made in these areas, the i
flow mcdels that numerically integrate the 2-D or 3-D field ‘ ‘
j 1 equations will become more popular, This approach provides the
; ultimate prospects of analyzing the effect of detail design
: ' changes on combustor performance, and eventual quantitative
interpretation of experimental data with resultant improvement
b in empirical correlations. '

LS

S R S
-
v

The performance of a combustor is determined by its

: internal flow-field characteristics, which are influenced i

strongly by a number of variables. These include: E 3
3

e
e e W

e Primary~zone volume and equivalence ratio ;
v { :
! !
1 e Level and scale of mixedness ;' 3
5 1 b
N b 3
4 ] Fuel~nozzle spray characteristics and orientation | \
i

wilth respect to the recirculation zone

o -

e Combustor-inlet pressure and temperature, and
? : temperature rise

op e

) Combustor residence time

f For correlating and interpreting combustor data, analytical . i
models are expected to give quantitative predictions (from an
engineering point-of-view) of the following parameters:

: ° Combustion efficiency, especially at low power Vo i
i conditions { E
; N
- ® Exhaust-temperature quality ? 2
§ i
I $
1 40
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¢ Liner-wall temperature levels and gradients,
including hot spots

) Gaseous emissions
® Fuel~-nozzle performance
] Liner pressure drop and airflow distribution

A number of questions must be resolved in order to achieve
a most economical engineering tool for combustor design.
These concern:

o Mathematical models of turbulence, chemical
kinetics, spray combustion, and radiation

® Numerical scheme

° Boundary conditions

These have heen discussed in detail in Volume III. Simple
and well-tried mathematical models of turbulence and its effect
on combustion, spray combustion, chemical kinetics, and radiation
were employed. The models used are a two-equation turhulence
model, a two-step kinetic scheme, and a six-flux radiation model,
as described in Section II of Volume III. The numerical schemes
in the elliptic and parabolic programs are variants of the
numerics described in References 1 and 2. Purther details on
the numeries and boundary conditions are given in Sections III
and IV of Volume III.

Due to computer-memory limitations and extended computation
times with a fully elliptic numerical scheme, all of the
combustor-performance parameters cannot be economically pradicted
by a single computer code., Coneequaently, a multi-lavel mnalysia
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approach has been developed, as presented in the empirical/
analytical combustor-design procedure logic chart of Figure 5.
A brief description of the following six analytical models is
given in Section III.

® Arnnulus—-flow model
° 3-D combustor-flow model
e Transition-mixing model

® Wall-cooling model

® Emiasion model

® Fuel-insertion model

The manner in which the empirical-design approach is inte-
grated with analytical models is deacribed in the following
paragraphs.

After a new engine envelope, associated component con-
straints, and the engine fuel schedule have been defined, a
preliminary combustor sizing is executed by utilizing various
"experiance" correlations. Simplified one-dimensional models,
such as described in Section II.A, are then used to define a
preliminary combustor design. With the help of these simple
and economical calculations, it ls relatively easy to study a
number of different design concepts to arrive at the most
promising configuration.

Further improvement in the basic design is undertaken by
using the advanced analytical models shown in Figure 5. The
necesgity of using this approach becomes more apparent 1f the
new engine envelope forces the consideration of combustor con-
cepts that lie outside the designer's experience and/or
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empirical nmorrelations. The models can be used to parametrically
study the effects of detail design changes on combustor per-
formance. A number of combustor modifications may have to bhe

run before arriving at an acceptable engineering compromise.

The computer~-iteration process might involve many man-weeks of
effort, with attendant computer cost.

A relative comparison has to be made between computer cost
and hardware test expenditure. It is not expected that analy=-
tical experience alone can shorten the combustor-development
time. It is a judicious blend of analytical model predictions
and development experience that would significantly reduce the
time and cost. As technical advances are made in computer
technology, numerical fluid mechanics, and physical understand-
ing of various combustion phenomena, the extent to which
perasonal judgement is required will be minimized. In addition,
with the application of the new design technique to a variety of
combustor configurationa and back-correlating with relevant
data, it is hoped that the technique will become more useful and

cogt~affactive as a design tool,
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ITI. ANALYTICAL MODELS DESCRIPTION

A brief description of the six analytical models is pre-
sented below. For a more detailed description, see Volume III.

A, Annulus Flow Model.

The annulus flow model is used to calculate pressire losses
and airflow distribution within the annulus external to the
combustor liner.

Annulus losses and flow distribution are computed from the
generalized influence-coefficlent method given by Shapiro.9
This method leada to the following aguation for loss in total
pressure for a small finite-length of duct:

ap 2 [ar da
t_ KM t 4£dx B dw
F;""T[t Y5t G k- * 20y 'w]
where: P, = total pressure

M = average Mach number in element
T, = total temperature

= wall friction factor

dx = element length

D = duct hydraulic diameter
CD = drag coefficient of inserted bodies
AB = frontal area of inserted body

A = duct area

y = velocity of injected mass/duct velocity

dw = injected mass flow
W = duct mass flow

9Shapiro, A. H., "The Dynamics and Thermodynamics of

Compressible Fluid Flow," The Ronald Press Company (1953).
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The Mach number is obtained from a similar influence coeffi-

3 The above analysis includes

cient equation given by Shapiro.
the effect of area change, heat transfer, friction, drag, and

mass addition,

Sswirl effects are accounted for by solving the previous
equations in the direction of actual flow, together with an
equation for angular momentum with friction loases. The computer
program for this model generates a pictorial representation of
the combustor, and tabulates the flow parameters at specified
stationas, A typical computer=-output plot is shown in Figure 6.
The program can calculate pressure drop from an assigned fixed-
orifice geometry, or can size orifices for a desired pressure
drop and an assigned flow distribution,

The annulus~flow model calculates bhoundary conditions, such
as flow distribution around the combustor liner, jet velocity
and angle, etc., which are required by the combuator internal-
flow nodels.

B, 3=D Combustor-Parformance Model.

The combustor internal flow=-field characteristics are
strongly influernced by airflow distribution around the liner,
jet velocities and efflux angles, nozzle-spray properties, fuel/
air ratio, and dwell times of different zones., The governing
aero/thermo aequations are coupled and nonlinear, and defy analy-
tical solutions of all but a few academic problems,

A 3-D combustor=performance model has been developed based
upon a code supplied by Professor D.B. Spalding. The model
numaerically integrates the governing equations for the following
variables:
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® Axial, radial, and taagential velocity components

° Turbulence kinetic energy (k) and dissipation
rate ()

e Unburned hydrocarbons (cxuy)' CO, and composite
fuel-mass fraction

° Stagnation enthalpy

[ ) Radlation vectors along X, Y, and 2 directions

® Spray droplet size and distribution

The two-aquation turbulence model, requiring solution of k
and ¢, is moderately conplex, and is considered to he superior
to other models having a similar or lesser degree of complexity.

This model has been extensively used by many researchers, and
has proved to be adequate in a wide range of flow conditions,

including the complex combustor flow-field mapped in this program

and described in Sections IV and V. More advanced turbulence
models, such as those based upon the Reynolds stress-modeling
approach, are not yet sufficlently developed to warrant their
use in complex combustor flow~field problems.

The combustion rate is computed via a two-step kinetioc
acheme wherein:

X R (%

Cy Hy + (! 4 *) (0, + n Np) "§ x CO + ¥ H,0 + \3+ *)n N,

X CO+ ¥ (0, +nNy) Rogxco, + $nnN,

The effective reaction rate (Rf) for fuel oxidation is com~
puted from the minimum of the reaction rate controlled by chemi-~
cal kinetics, fuel-mixing rate, or oxygen-mixing rate. Simi-
larly, nro denotes the minimum of the reaction rates of CO

48

DR I

Lherdgn AN

\RURTETTRRPTY T Al My el KA “fwﬂ' it Lo bs Ly

i T B mmtn T

V. S—

e




combustion as controlled by chemical kinetics, niixing rate of CO ] ?f
and/or oxygen. Such a scheme has given good correlation with

measured internal-species profiles from & number of combustion
] systems,

s

The 3-D combustor~-performance model was validated with

b, - experimental data on:

?é e  Mixing of cold transverse jets with a confined 3
? o hot stream -
\ ®  Can combustor mapping 3
B E‘ . l §

b - Nonreacting 3-D velocity and pressure A

d measurement |y

‘ |

é - Internal profiles of emissions with natural

gas and Jet-A 3

- Radiation <casurements.

e =3

C. Wall-Cooling Model,

e
oo

An accurate assessment of the liner wall-temperature levels |
and gradients is very important as it directly affects the liner
life. If a wall-cooling model underpredicts liner temperature 1
by 56 K, the liner life will be reduced by approximately 40 per- 3
cent, as reported by Sturgels.lo Conventional, one~=dimensional, -
wall=cooling models are inadequate for predicting liner-wall i
temparatures of current-technology oombustornlo. A full 3~D ‘ 3
elliptic solution for predicting liner-wall temperature is
} ; desirable, but is not economical due to the extended nomputer
: time required to get a suffiocient number of nodes near the
wall for achieving a grid-independent solution.

e,

e e e

Sturgass, G. J., "Gas Turbine Combustor Liner Durability-
The Hot-Streak Problem," Project S8quid (ONR) Workshop on R
Gas Turbine Combustor Design Problems, 1978. 3
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since the velocity vectors near the wall are predominantly
in the same direction as the main €low, a parabolic solution pro-
cedure can be efficiently used to compute liner-wall tempera-
tures. A 2-D parabolic program was developed for this purpose.
The program solves for axial velocity, swirl velocity, turbulence, )
kinetic energy and dissipation, a two-step kinetic scheme, s
spray combustion, a two-flux radiation model, and stagnation
enthalpy. The modal uses a two-equation turbulenca model of
Launder and Joneu.ll The numerical scheme is based upon

Refarence 2. »
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y The appropriate initial/boundary and edge conditions are
supplied by the 3-D combustor-performance model and the annulus-
) loss model, as desaribed in Volume III. This program is quite
flexible in that single or multiple cooling bands, both in the
primary and secondary zones, can be analyzed. It is possible to
handle.both annular and can geometries.

D. Tranasition-Mixing Modal,

A reverse~flow annular combustor, for a turbine engine that
employs a centrifugal compressor as itm last stage of compression
and axial turbine for its high-pressure spool, has a reversa~flow
transition liner., The flow in practical transition liners
usually does not have a negative streamwisn velocity component.
Significant jet mixing has taken place in the straight section
upstraan of the transition liner. However, the mixing in thea
ragion of the transition liner, where flow changes from axial to "
radial and fully completes a 180-dagree band, muat be computed
to predict the pattern factor of a raverse=sflow combustor that
feeds and axial turbine. ‘ ]
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IlJones, W. P., and B. E. Launder, "The Caluulation of ' ’{
Low=Raynolde Number Phenomena with a Two~Equation Model 4
of Turbulence,”" ASME Paper 72-HT-20, ‘
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The geometry of practical transition liners is too complex
to make efficlient use of tha 3-D combustor-performance code,
If the flow variations within the transition liner along the
circumferential direction are small and can be neglected, a 2~D
parabolic program can be used to predict mixing rates along
{ different Z-r planes, where 2 is the streamwise coordinate.
e A 2-D parabolic program was therefore developed using numerics
’ and mathematical models similar to those of the wall-cooling
model described in Section III.C. It should be noted that for
' nonracirculating flows in axisymmetric geometries with stream-
line curvature, the elliptic effects of pressure along the Z
direction must be takan into account, However, this was not
incorporated in the model as it was beyond the scopc of this
programs the cross-stream variation in pressure, due to stream-
line curvatures, was taken into account,

E. 2~D Emissions Model.

With the embrgence of public concern for air pollution, an
increased emphasis has been made by industry, including
AiRepsearch, to improve the fundamental undorstunding of various
i processes leading to the formation of harmful pollutants.
Numerous detailed kinetic schemes have appeared in the literature
for prediocting HC, CO, and Nox. In addition, different taech~-
niques have been put forward to compute {jameous emissions from
gas turbine engines, Buch as References 8 and 12. Most of these
caloulation proceduras use either a simplified flow-field
. mode1® or estimate "exchange coefficients" from some detailed
\ flow-fiald computations based upon simple kinetic lchemu.l2

Hovwever, some work ham been reported in parabolig flow computa-
\ tion with detailed kinetics, such as Reference 13,

‘ S8anborn, J. W., R. 8., Reynolds, and H. ¢. Mongia, "A Quasi-

& Three-Dimensional Caloculation Procedure for Predicting the
Performance and Gaseous Emissions of Gas Turbine Combustors,"
AIAA Paper No. 76-682,

g 13Edolman. R., J. Booclo, and G. Weilerstein, "The Role of B

) Mixing and Kinetics in Combustion Generated NOx," Paper
Erelented at Aiche Symposium on Control of NOX Emissions

n Direct Combustion Power Sources, 1973,
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A 2~D parabolic program with a l6-step kinetic schema was
developed based upon nodified Patanker-Spalding numerica.2 The
modification was made in regard to computing chemical-species
source terms for a coupled~set of equations, This resulted in
a significant reduction in computation time. Other important
features of this model are:

® Effect of turbulence in combustion, as explained
in Volume III.

® Spray combustion of complex fual, such as
JP=4 and JP=5,

o A two=flux radiation model.

PF. Fuel~Insartion Model.

Small, high-pressure-ratio and high-tempaerature-rise
roverse~flow combustors pose a major problam with respect to
the selection of an optimum fuel-injection asystem. A major
part of the problem i creatad by excaessive or uncontrolled
impingemant of fuel on the combustor wall., To minimize fuel
impingement, it is of paramount importance to attain an optimum
matching betwesn fuel~-nozzle characoteristics and combustor
intarnal~flow field., It may be recalled that the 3=D combustor-
performance model considers spray aevaporation/combustion of
complex fuels, such as JP-4 and JP~5., Consequently, the program
can be used for defining an optimum fuel-injection smystem, as
reported in Section I1I of Volume I1I,

A fuel-insertion model was developed to save computer time
and facilitate a quick selection of an injection system. This
program computes Sauter mean diameter (SMD) of the pressure
atomizer (mimplex or duplex), air-assist pressure atomizer,
and airblast and air-assist airblast nosgles. The droplet
heat-up, evaporation, and combustion are calculated based on
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the Priem and Heidman model14 modified to take into account

variabla properties of the jet fueis., The droplet drag coeffi-
cient is calculated froms

Cy, = Cd / {1+4B)

d g

where Cd is the drag coefficient of a nonreacting sphere, and
B is theeevaporation/burning rate constant.

The spray is initially divided into five droplet-size
groups. The trajectory of each of the droplet sizes is computed
for uniform flow on any specified flow field. Knowing a com~
bustor internal-flow field (as computed by the 3-D combustor-
performance model), the effect of spray-cone angle, 8SMD, fuel-
nozzle pressure drop, fuel physiocal properties on the spray tra-
jectory, and amount of fuel impingement on the linor wall cai be
easily computed with the fuel~insertion model.

1‘Priom, R, J., and M. F, Heidmann, "Vaporization of Propellants

in Pocket Enginas," ARS Journal, Nov. 1959, pp. 036=842,




3 IV, ELEMENT TESTS
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A parallel experimental investigation was conducted during ‘
Task I to verify analytical models described in Section III, and i
to identify potential problems associated with small, high- : _
pressure-~ratio, high-temperature-rige combustors. Major design : f
; problems encountered in the development of advanced small com-
ﬁ‘ bustors are generally concerned with the following components
f; and performance parameters:

i n
> .
By AR T Nt - S I T A2

g ° Liner cooling @3
:‘,]\
i f ° Discharge=-temperature quality i\
b A

;_ ° Gaseous emissions, particularly idle combustion ; ?.
ﬁ ¢fficiency ; ;:

§ ] Fuel injection %

Elenmeant tests were therefore conducted during Task I to | .,
afford a significantly improved understanding of the design con-
straints imposed by each of these.

e A

el A The performance of conventional and advanced cooling con=

| ' cepts was measured under a simulated combustor environment, as

y : sumaarized in Section IV.A. Experimental data on the mixing of

' ' cold transverse jets with the hot-gas stream of a can combustor
was talten (as described in Section IV.B) to better understand the
mixing charactetistics of the impinging jets in grder to mini-
mize the dilution-air requirement. The internal flow-field
characteristivs of a typical Garrett/AiResearch can combustor ‘
v ; wvere measured with and without nomﬁﬁgtion, as summarized in
Sections IV.C and IV.D. The data was taken with both gaseous

and ligquid fuels.
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A limited amount of test data was collected on the radia-~
tion heat lcading and is summaried in Section IVE. The ignition
characteristics of a piloted airblast Nozzle and an air-assist
airblast nozzle were measured and are summarized in Section IV.F,

Fuel~nozzle characteristics, including mean droplet size
and spray cone, strongly influence the combustor performance,
such as idle emissions, light-off and blowout characteristics,
dome and liner wall carbon~formation tendencies, and temperature
levels and gradients. A droplet-measurement apparatus was
therefore developed under this program and described in Section
IV.G. The Sauter mean diameters of an air-assist pressure
atomizer and air~-assist airblast nozzles were measured and
correlated. The mixing rate in a typical reverse-flow combustor
transition liner is summarized in Section IV.H.

A. Liner Cooling.

Liner cooling for a combustor matched to the last staga
of a centrifugal compressor and an axial or radial turbine
imposes severe limitations on the design of low=-airflow, high~
preasure, high-temperature-rise gas generators. The cooling-
alr requirement for a combustor using conventional cooling~film
geometries can exceed 75 percent of the engine tot:al airflow
rate in order to achieve long combuster-life objectives.

Although conventional film=-cooling concepts are suitable
for low=pressure ratio combustors, and are inexpensive to fabri-
cate, their disadvantages and limitations provide impetus for
evaluation of more advanced cooling concepts. Disadvantages of
conventional film-cooling conuvepts include

] Saw-tooth wall temperatures resulting from pure

film cooling without attention to the cold aide
of the liner
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) Parformanca that is strongly regilon-dependent
] Fair-to=-poor coolant-flow control

) Dagradation of pattern factor

® Overcooling at low power, thus cquenching the

combustion reactions and contributing to HC and
CO emissions.

Quantitative knowlaedge about many frequently used £ilm-
cooling configurations under combustor-operating conditions is
limited because of the difficulty encountered in obtaining
detailed and reliable data with known coolant=-flow distribution,

Most of the practical cooling-slot geometries, Figure 7,
generate a 3-D flow-field downstream of the lip. The moat
significant geometric parameters governing the film-cooling
performance are metaring-hole~area/slot open area and the
relative cover-plate length L/SG. It was experimentally
obgerved (for tha low temperature difference and low turbulence
level) that design correlations derived for the impingement
film configuration also apply to pinched impingement film and
wiggle~strip geometries. The hnle step design did not perform
as wall as the other configurations.

The above tests were conducted at approximately ambient
pressurae and temperature, The effect of the ratin of the main
(hot) stream to the .cooling stream gas temperatures (or the
density ratio) significantly affects the cooling-slot perform-
ance, This was reported by Burns uind Stolleryls, and shown

typically in Figure 8. Thereiloure, the performance or a
1snurne, W. K. and J. L. Stollery, "The Influence of Foreigu
Gas Injection and Slot Geometry on Film Cocling Effective-

ness," Int, J. Heat and Mass Transfor, Vol. 12, pp. 935~951,
1969,
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practical cooling=band configuration was experimentally measured
under simulated combustor temperature environment as listed in
Table 1. The temperature ratio (density ratio) and jet-to~hot~
stream velocity ratio were varied over the range of interest in
a typical combustor environment,

The test rig and associated instrumentation is described
in Section IV,A,l. The description and data for the four cooling
concepts listed in Table 1 are given in Section IV.A.2 through
IV.A.5. Finally, a comparison between three cooling concepts
(namaly, conventional film, conventional film/extended surface,
and impingement/film) as inferred from wall-temperature levels
and gradients determined by thermal=-pensitive paint (Thermindex
0G=6), is given in Section IV.A.6.

1, Liner-Cooling Test Rig and Instrumentation

A general layout of the test rig is shown in Figure 9. A j
glave can combustor was used to supply a hot airstream for the
liner-cooling or jet=mixing test sections. Different test
sections can be flanged to the combustor, as shown in the ¥
%! layout. The test-section plenum was made compatible with [
E;ﬁ different test-section liners, , %b

The cooling and annulus airflow rates were measured at the
_ inlets, shown in Figure 9. The air for the test sections
- enters the annulus through 60 orifices of 7.2 mmn diameter,
arranged in six staggered rows, giving approximately a 5-percent
pressure drop at the design condition. A mattling length of
approximately 20 cm (9 timems the annulus hydraulic diameter) was i
provided for the flow to mettle before entering orifices of the
conventional film/convection cooliny band. Airflow rates at the
outlet wers measured., The difference between the measured flow -
rates at the inlet and outlet constituted the cooling airflow
rate. Annulus air static pressure and temperature were measured
at a plane 3.9 om upstream from the cooling~-slot discharge lip.
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TABLE 1, LINER COOLING TEST GECMETRIES AND 4
FLOW CONDITIONS. [ '
/
g Cooling Configurations j
xﬁ - Conventional Film/Convection Cooling
4 -  Conventional Film/Extended Surface Convection =
| Cooling
g - Impingement/Film/Convection Cooling ) :
‘r - Coarss~Pore Transpiration/Convection Cooling b+
JZ Range of Flow Parameters